J. Appl. Maths Mechs Vol. 57, No. 1, pp. 125-131, 1993 0021-8928/93 $24.00+.00
Printed in Great Britain. ©1993 Pergamon Press Lid

DYNAMIC PROBLEM OF THE THEORY OF
ELASTICITY FOR A PLANE CONTAINING A RIGID
CRUCIFORM INCLUSIONf{

V. G. Porov
Qdessa

(Received 12 June 1990)

The oscillations of a rigid cruciform symmetric inclusion lying in an unbounded medium and to which
a time-periodic twisting moment is applied are considered. {The plane deformation case is treated.)
Discontinuous solutions of plane elasticity theory are used (in which displacements and stresses are
discontinuous along a given line). A system of integral equations for the required discontinuities is
obtained and solved by the mechanical-quadrature method. The frequency-dependence of the inclusion
oscillation amplitude is investigated together with the elastic stress density near its ends and the wave
field in the far zone.

1. WE wiLL construct a discontinuous solution of a dynamical problem in the theory of elasti-

city for the case of harmonic oscillations of a medium under plane strain conditions. The

discontinuities lie in the range x=0, -g, <y=<a, with jumps (here and henceforth the factor
“* is omitted)

(ox) = 10, (Txy) = x2(0), (W)= x3(»)
(v) = xa(»), (f)=f(+0,y) — f(~0,y) (1.1)

The discontinuous solution of the Lamé equations for harmonic oscillations under plane
deformation conditions with discontinuities (1.1) and satisfying the radiation condition at
infinity is the function
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Here

k} = p? /(N + 2p), K3 = pw?/u

+eo  exp(—iox + if(n - y))

1
rp=rmn -y x)= —
j = 5~ » x) an /I @+ - K}

dadp =
1 P —
= - HP V-t + X)L =12

and r,(y, x) is a solution of the Helmholtz equation: Ag; +x/@, = 5(x)6(y).

The generalized version of the method of integral transformations [1] was applied to con-
struct the discontinuous solution.

We consider the discontinuous solution that undergoes the jumps

[oy] = wi(x), [ryx] = w2(x), [V] = @a(x), [u] = 0a(x)
[f] = fix, +0) — f(x, —0), —-a, < x < a,

in the interval y=0, -a,<x<a,.

We denote it by u,(x, y) and v,(x, y). It can then be constructed from formulae (1.2) if x,(x)
is replaced by ¢@;(x) and the variables x and y are interchanged. Here the formula for
becomes a formula for v, and the formula for v, becomes a formula for w,.

The discontinuous solutions constructed can be effectively used to reduce problems in the
theory of elasticity for media containing crack-type defects and thin rigid inclusions to integral
equations.

2. We consider the following problem. Suppose that a thin rigid cruciform inclusion is
situated in an elastic medium and occupies two segments intersecting at the origin of coord-
inates

x=0, —a, Sy<a, y=0, -a; Sx <aq

to which a moment Me ™ varying periodically with time is applied. The inclusion will be
modelled by rectilinear segments on which the stresses are discontinuous

(ox) = x10), (Txy? = x2(0), —a1 <Y <aq (2.1)
[oy] = @), [Tyx] = 0r(x), —a; S x < a

while the displacements satisfy the conditions
u(to’ J’) =, U(io, y) = 05 —a, < Yy < ay (2'2)
v(x, ¥0) = yx, u(x, *0) = 0, —-a; < x < a3

where yis the angle of rotation of the inclusion under the action of the applied moment.

From symmetry one can show that there are no shear stresses in the contact domain of the
inclusion and medium, ie. x,(y)=0, @,(¥)=0, and the discontinuities in ¥,(y) and ¢@,(x) are
odd. Here the condition that the corresponding displacements in (2.2) must be zero is satisfied

automatically.
We will look for the solution of the problem in the form of the sum of two discontinuous

solutions

u=u tu, v=u +tu 23)

constructed from formulae (1.2), where one must put x;(»)=0, ¢,(x)=0, j=2, 3, 4. It has the
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form

u(x,y) = izll ::%(n) [(x3 +%)f1(n—y,X) - :;2 rm -y, x))dyg +

+ if::%(%ﬂ [_a?c;ay nn - x, ¥) — ai;y rn(m - x, y] dn

v(x,y) = _f:, ’lﬁ:;—n) [ a:a:y -y, x) - ai;y r(m - y,x)]dn + ¢4
+ ijiz—ﬁ%)— [(«] + :; yr(n - x, y) - ::2 r(n - x, y)] dn

The function u(x, y) is odd in the variable y, which v(x, y) is odd in the variable x.

To determine the required discontinuities y,(n) and ¢,(n) from the remaining conditions in
(2.1) one can obtain integral equations. It is more convenient not to use conditions (2.2)
themselves, but equivalent conditions obtained by differentiating the former

u;:(iO, y) = —a Sy <a, U;(X, t0) =7y, -a;<x <aq (25)

Substituting (2.4) into (2.5), we arrive at a system of two integral equations, which after
reduction to the interval [-1, 1] have the form

2
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Here
2 2
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3
Ry(2) = 28%(co + lnz""zi) 2, &) —% %, (&)

ko |
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S@) = n[-2Z(z) - £Z (k) + Z,()]

0x,y) = Qi1(x,y) + Qx(x,»)
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Ekop

Qi(x,») = 28 (co + In ) A, ») 2 () + A2 (x, y) Zp(EP)] +

+ Ea ["A’l(x: y) E)\(Ep) + Al(x: y) ES(EP)]

0a(x, %) = —2(co +1n ";” ) [4,(, ) 3,0 + Axx, ¥) Zg)] +

+ Aa(x,y) Za(p) — Ai(x, ) Z,(p)

Glx,y) = m { £ [41(x, ») T (80} + As2(x,¥) Z,(m] —
- Al(xvy) Ea(p) ¥ AZ(x:y) Eﬁ(p) }

2@ = 2 aqzl p =ity
=1

x(x? —3y?) 4xy?
Ay(x,y) =——5———, Aixy) =—;
p p
e (1) 8" 1
a = = - —
k k+1 Br Kt (k — 1)!22k , Ak B (2hx_y + X )
B 1 1 1 1
O = — [dhy — ——2hx +——=)1, ho = 1, hg = 1+ — + . +—

Ko = Kaay, co = 05772157

(where v is Poisson’s ratio).
To determine the required constant it is necessary to use the equation of motion of the inclu-
sion as a rigid body

, . +a +a
e WIM = ¢ ""tM, tJ,€, M, = yx0nNdy + fzxcpl(x)dx

-a, -a,

where J, is the moment of inertia of the inclusion, ¢, is the angular acceleration and M, is the
moment of elastic reaction forces.
We transform the equation of motion into the form

+1 2+], 2
My = y[ | t;a(Ddr + € I! gy () de] — vk B
-1 —
M m, ] 2.7)
My = = 1+

where m, is the mass of the part of the inclusion occupying the interval [-1, 1] and p is the
density of the elastic medium.

We will construct the solution of the system of integral equations (2.6) numerically using the
method of mechanical quadratures [2, 3] and the oddness of the functions g,(f) and g,(#). To
this end we represent the required functions in the form

g = (1 — 2y %y, i=1,2 (2.8)

and approximate the y,(f) by odd interpolating polynomials of degree 2n-1 constructed with
respect to the nodes

fp=cosx;, x; =@ - Dnf(4n), 1 = 1,2,..., 2n

These polynomials have the form [4]
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. 2 n n
W =LY 0 = — £ (e) £ cos(@m — DxlTam_1() 29)

~

where the 7, ,(t) are Chebyshev polynomials.
Then the following quadrature formulae can be obtained for the singular integral operators
in (2.6)

1 T n ]
+f—£l(—)— dr = ZTTIE A (e, 7= 12,..,n
ST > | (2.10)
y 1 n cos(2m — 1)x;sin(2m — 1) x;

- n m=1 sinx;

7 srpegar = § BPY 0 @11

Pl(Tr t) = P(ET: t)7 Pz(T, t) = P(T’ Et)
-3
. P n _
=0 _1yng2m—1p _
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py=ve +il, py=VI+er

- _ -1
a9 = epy tHT, Ay = Py T
br(n” =(@m - Doy - €, b,(nz) =(2m - 1) €4, ; -1

Replacing the singular integrals in (2.6) by the quadrature formulae (2.10) and (2.11), and
the regular integrals by Gaussian quadrature formulae [4], and equating the left- and right-
hand sides for ¢=¢; (j=1, 2,..., n), we obtain a system of linear algebraic equations in the
v (i=1,21=12,...,n)

n RV +is() n
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=1 n =1
L Qen, 4) + iG(er, 1)

n
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Condition (2.7) for determining y acquires the form

m
M, = Lo él ) + €va(t)] — w38 (213)

Solving system (2.12), (2.13) using formulae (2.9) and (2.8), we construct an approximate
solution of the system of integral equations (2.6).

3. To describe the elastic stress density near the inclusion we introduce the stress intensity
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factor (SIF) [5]

KMay) = lm V2 = a) 100, »)y K@) = lim  V2(x = ;) yx(x, 0)
(1]

y—a, +0 y—a, +

The SIF is expressed in terms of the approximate solution of the system of integral
equations obtained by the following formulae

£y
n

n
K'Ya) = ek, ki = — I:J i (1) . F=1,2 (3.1)

1 sinx;

To describe the wave field far from the inclusion we will obtain an asymptotic formula for
the displacements u(x, y) and v(x, y). We change to polar coordinates x=Rcos@ and
y=Rsin@ in (2.4) and let R — . Using the asymptotic expansion of the Hankel function
together with the approximate solution of the system of integral equations (2.6) we find

us(R, 8) = E\f1(8) + Eofo(8) + ORS )

va(R, 8) = —E1py(8) + E2py(8) + ORs ™) (32)

By = £/ nexplit®Ro — )], Fs = nexpliRe — )], 1 = v/
1 nexp 0 4 3 2 n f p 0 4 ’ 3 TIRO
fr€0) = oxycos’8 — eogysinfcos®  Pk(8) = ogysinfcosd — eop,sin?h
1 .
ok = — | g1 exp(ibgrocosd)dr, k = 1,2, [ = 1,2
2r -1
by =€ by = 1, us(R, 8) = aj'u(Rcos8, Rsind), v«(R,0) = a;'v(Rcosf, Rsinf)

Using the approximate solution constructed, formulae (2.13) and (3.1) were used to investigate the
dependence of the maximum amplitude of the inclusion oscillations |yl and the maximum absolute
values of the SIF 1k, |, |k, | on the parameter k, for v=025, M, =1, B=2. These dependencies are
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shown in Fig. 1. Curve 1 corresponds to an equal-sided cruciform inclusion (here k,=k,), curve 2
corresponds to a ratio between the sides of €=0.5, and curve 3 to the case of a single rectilinear inclusion
(e=0). The solid curve shows the variation of |k, | and the dashed one shows |k, |. It is clear that as x,
increases, the quantity 1y1 decreases to some value, and then it stabilizes, with all three curves almost
coinciding.

As x, increases the SIF up to a certain instant decreases monotonically, and then begins to oscillate.
For low oscillation frequencies (i.e. for small «x,), the largest stress density is near the rectilinear
inclusion, and then as x, increases all the curves become close and intersect one another.

The wave field far from the centre of the inclusion was also investigated. Figures 2(a) and (b) show the
dependence of the maximum absolute values of the displacements Iu, | and |v,| on the polar angle
0=6=nr/2for R,=1000, «,=3. The notation is the same as in Fig. 1.
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